In summary, the results of this analysis suggest the possible mode of action of sulfinpyrazone. The presence of Ca^{2+} deprotonates sulfinpyrazone at the C(4) and C(4') positions providing the capability of forming strong hydrogen bonds between O(6) and O(6'). In addition to this, the coordination with calcium through sulfinyl O atoms converts this compound into an active species. The two crystallographically independent molecules exist in two significantly different molecular conformations, indicating that the molecules are flexible and can easily undergo a conformational change as a result of the variation of the intermolecular interactions. The inherent conformational flexibility and cationinduced deprotonated state of sulfinpyrazone make this molecule a suitable species for ligand action. This property of sulfinpyrazone may be responsible for its uricosuric effect.

It is a pleasure to thank Professor G. Tsoucaris for his help in intensity data collection. This research was supported by a grant from the Indian Council of Medical Research, New Delhi.

References

BROWN, I. D. (1988). Acta Cryst. B44, 545-553.

Acta Cryst. (1990). C46, 1065-1068

- COOK, W. J. & BUGG, C. E. (1976). In *Metal-Ligand Interactions* in Organic Chemistry. Proceedings of the Ninth Jerusalem Symposium on Quantum Chemistry and Biochemistry, edited by N. PULLMAN AND N. GOLDBLUM, pp. 231-256. Dordrecht: D. Reidel.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- Go, K. & KARTHA, G. (1984). Acta Cryst. C40, 1869-1871.
- GODYCHI, L. E. & RUNDLE, R. E. (1953). Acta Cryst. 6, 487–498. GODYCHI, L. E., RUNDLE, R. E., VOTER, R. C. & BANKS, C. B. (1951). J. Chem. Phys. 19, 1205–1210.
- GUTMAN, A. B. (1966). Adv. Pharmacol. 4, 91-102.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KRISHNA MURTHY, H. M. & VUAYAN, M. (1981). Acta Cryst. B37, 210–213.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L. GERMAIN, G., DECLERCQ, J-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- PAULING, L. (1960). In *The Nature of the Chemical Bond*, p. 484. New Delhi: Oxford and IBH.
- PFISTER, R. & HAFLINGER, F. (1961). Helv. Chim. Acta, 44, 232–238.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SINGH, T. P., REINHARDT, R. & POONIA, N. S. (1984). Ind. J. Chem. 23A, 976–982.
- SINGH, T. P. & VIJAYAN, M. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 693–699.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

The Structure of Cyclonebularine Derivatives

By Kentaro Yamaguchi, Hiroyuki Hayakawa, Hiroshi Ashizawa, Hiromichi Tanaka and Tadashi Miyasaka

School of Pharmaceutical Sciences, Showa University, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142, Japan

(Received 2 May 1989; accepted 7 June 1989)

Abstract. (I) 7,8-Dihydro-2',3'-O-isopropylidene- N^7 -(p-toluenesulfonyl)-8(R),5'-O-cyclonebularine,C₂₀- $H_{22}N_4O_6S$, $M_r = 446.5$, triclinic, P1, a = 11.069 (1), $b = 13.087(1), c = 8.741(5) \text{ Å}, \alpha = 99.31(1), \beta =$ $102.16(2), \gamma = 109.81(1)^{\circ}, U = 1126.6(7) \text{ Å}^3, Z = 2,$ $D_x = 1.316 \text{ Mg m}^{-3}$, $\lambda(\text{Cu } K\alpha_1) = 1.5405 \text{ Å}$, $\mu =$ 1.619 mm^{-1} , F(000) = 468, T = 293 K, final R =0.035 for 3673 reflexions. (II) N⁷-Benzoyl-7,8dihydro-2',3'-O-isopropylidene-8(R),5'-O-cyclonebularine, $C_{20}H_{20}N_4O_5$, $M_r = 396.4$, monoclinic, $P2_1$, $a = 11.880(1), b = 7.603(1), c = 10.626(1) \text{ Å}, \beta =$ U = 958.9 (2) Å³, $102 \cdot 16 (2)^{\circ}$, Z = 2, $D_{\rm r} =$ 1.373 Mg m^{-3} . $\lambda(\operatorname{Cu} K\alpha_1) = 1.5405 \text{ Å},$ $\mu =$ F(000) = 416, T = 293 K 0.850 mm^{-1} final R = 0.058 for 1498 reflexions. (III) N⁷-Acetyl-7,8-dihydro-2',3'-O-isopropylidene-8(R),5'-O-cyclonebularine, $C_{15}H_{18}N_4O_5$, $M_r = 334\cdot3$, orthorhombic, $P2_12_12_1$, $a = 10\cdot194$ (1), $b = 18\cdot389$ (1), c = $8\cdot400$ (4) Å, $U = 1574\cdot6$ (9) Å³, Z = 4, $D_x =$ $1\cdot410$ Mg m⁻³, λ (Cu $K\alpha_1$) = $1\cdot5405$ Å, $\mu =$ $0\cdot918$ mm⁻¹, F(000) = 704, T = 293 K, final R = $0\cdot043$ for 1337 reflexions. There is substantial difference in the conformations of the *p*-toluoyl groups in the two independent molecules of (I). The 8(R)-configuration is observed in all three compounds.

Introduction. In the course of our work on the synthetic chemistry of nucleosides, we obtained a novel type of nebularine $(9-\beta-D-ribofuranosylpurine)$: N(7)-substituted [*p*-toluoyl (I), benzoyl (II) and acetyl (III)] 7,8-dihydro-8,5'-cyclonebularines

0108-2701/90/061065-04\$03.00

© 1990 International Union of Crystallography

(Hayakawa, Ashizawa, Tanaka, Miyasaka & Yamaguchi, 1989). This paper describes the X-ray structure analysis of these three cyclonebularine derivatives containing the new ring system.

Experimental. Preparation and physical properties of all three compounds are given in Hayakawa et al. (1989). Details of data collection and refinement are listed in Table 1. Intensity data collected with a Rigaku AFC5 diffractometer; graphitemonochromated Cu $K\alpha_1$ radiation; $\theta - 2\theta$ scan method; $(1\cdot 3 + 0\cdot 41\tan\theta)^{\circ}$ scan width; intensities corrected for Lorentz and polarization factors, absorption correction not applied. Structure solved using the program package SAPI85 (Yao, Zheng, Qian, Han, Gu & Fan, 1985) version of MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980).

The refinement was carried out by the full-matrix least-squares method with anisotropic thermal parameters for nonhydrogen atoms; the function minimized was $\sum w[|(|F_{c}|)^{2} - (|F_{c}|)^{2}]|^{2}$ with w = 1/2 $[\sigma^2(F_o) + 0.02(F_o)^2], \sigma(F_o)$ determined from counting statistics; all H atoms were located from the difference map and theoretical calculations, the initial thermal parameters were set to the equivalent isotropic thermal parameters of bonded atoms. All calculations were performed using a PANAFACOM computer with RCRYSTAN (Rigaku Corp., Tokyo, Japan) X-ray analysis program system. The atomic scattering factors were those from International Tables for X-ray Crystallography (1974).

Discussion. Final atomic parameters for compounds (I), (II) and (III) are listed in Table 2. The selected bond lengths and angles are listed in Table 3. Fig. 1 shows ORTEP drawings (Johnson, 1965) of the molecules (IA), (IB), (II) and (III). Fig. 2 gives stereoviews of the crystal structures.*

Table 1. Details of data collection and structure refinement

	(I)	(II)	(III)
Data collection		× /	
Crystal size (mm)	$0.20 \times 0.15 \times 0.45$	$0.20 \times 0.20 \times 0.40$	0.40 × 0.20 × 0.50
Cell-parameter determination:	20; 58–61	20; 5661	20; 54–60
No.; θ range (°)			
Scan speed ("min")	8.0	16.0	16-0
Max. $(\sin\theta)/\lambda(A^{-1})$	0.26	0.26	0.26
Range h	-12, 12	- 13, 13	11
k	- 15, 15	8	20
1	10	11	9
Standard reflexions No.; interval (ref.)	3; 200	3; 150	3;150
No. of reflexions	4210	1689	1424
independent	3843	1557	1372
used for LS	$3673[F > 3\sigma(F)]$	1498 $[F > 3\sigma(F)]$	$1337[F > \sigma(F)]$
Merging R for No. of	0.018	0.008	
equivalent reflexions	285	91	-
Refinement			
R	0.035	0.028	0.043
wR	0.050	0.081	0.051
G*	1.661	2.876	1.497
$(\Lambda/\sigma)_{}$	0.69	0.18	0.38
Max. heights in final Fourier map ($e Å^{-3}$)	0.45	0.40	0.32

* $G = \sum w\{[|(|F_o|)^2 - (|F_c|)^2|)]^2/(N_r - N_v)\}^{1/2}$.

Table 2. Atomic coordinates and equivalent isotropic thermal parameters

$B_{eq} = \frac{1}{3} \sum_{i} \sum_{j} B_{ij} \alpha_i^* \alpha_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Z	$B_{eq}(Å^2)$
(I)				-
N(14)	-0.2049(4)	0.7718(4)	0.0520 (6)	5.64 (19)
C(2A)	-0.1757(6)	0.8659 (5)	0.0056 (7)	6.11 (22)
N(34)	-0.0582(4)	0.9564(3)	0.0544(5)	5.39 (17)
C(4A)	0.0358 (4)	0.9427(3)	0.1617(5)	4.52 (17)
C(5A)	0.0168(4)	0.8477(3)	0.2204(6)	4.30 (17)
C(6A)	-0.1049(5)	0.7623(4)	0.1641(6)	4.74 (18)
N(7.4)	0.1377(4)	0.8688 (3)	0.3389 (5)	4.38 (16)
C(8A)	0.2303 (5)	0.9838 (4)	0.3593(7)	4.46 (19)
N(94)	0.1636(4)	1.0193 (3)	0.2325(4)	4.61 (16)
C(10A)	0.2053 (5)	1.1371 (4)	0.2291 (6)	5.03 (19)
C(11A)	0.1350 (5)	1.1975 (4)	0.2178(7)	5.07 (19)
C(12A)	0.2398 (6)	1.2667 (4)	0.4800 (7)	5.62 (20)
C(134)	0.3576 (5)	1.2342 (4)	0.4802 (8)	5.62 (20)
O(144)	0.3442(3)	$1 \cdot 1921(3)$	0.3117 (5)	5.96 (17)
C(15A)	0.3655 (5)	1,1473(A)	0.5723 (8)	5.32 (24)
O(16A)	0.2471(4)	1.0471 (3)	0.5148 (4)	5.06 (16)
0(17.4)	0.2471(4) 0.1122(4)	1.2782 (2)	0.2267 (5)	6.94 (19)
C(19.4)	0.1653 (6)	1.2847(4)	0.2517 (0)	6.68 (13)
O(10A)	0.1033(0)	1.3047 (4)	0.4674 (5)	6.04 (19)
C(20 A)	0.2737(4)	1.3002 (3)	0.40/4 (3)	10 24 (10)
C(20A)	0.0003 (11)	1.4012 (8)	0.4203(17) 0.2703(14)	0.20 (24)
C(21A)	0.2236 (10)	0.7707 (1)	0.2642 (2)	9.29 (30)
S(22A)	0.1965 (1)	0.7707 (1)	0.3042 (2)	4.72 (12)
O(23A)	0.0633 (4)	0.0734 (3)	0.5469 (3)	5.794 (17)
O(24A)	0.3112(4)	0.8200 (3)	0.1024 (4)	5.79 (17)
C(25A)	0.2377 (4)	0.7437 (4)	0.1924 (0)	4.47 (19)
C(20A)	0.3926 (5)	0.7964 (5)	0.2079 (7)	5.20 (20)
C(2/A)	0.4401 (6)	0.7/46 (5)	0.0704 (7)	6.14 (22)
C(28A)	0.3521 (6)	0.7020 (5)	-0.0704 (7)	6.15 (23)
Q(29A)	0.21/6 (6)	0.6232 (2)	-0.0825 (7)	5.92 (22)
C(30A)	0.1694 (5)	0.6/46 (4)	0.0481 (6)	5.04 (19)
C(3IA)	0.4061 (10)	0.0811 (9)	-0.2093 (9)	8.69 (35)
N(1B)	1.2150 (4)	0.0260 (4)	0.8669 (5)	5.75 (19)
C(2B)	1.2070 (5)	-0.0764 (5)	0.8499 (7)	5.75 (21)
N(3B)	1.1084 (4)	-0.1720(3)	0.7545 (5)	5-59 (18)
C(4 <i>B</i>)	1.0078 (4)	-0.1544 (4)	0.6678 (5)	4.62 (17)
C(5B)	1.0015 (5)	-0.0480 (4)	0.6800 (6)	4.70 (18)
C(6B)	1.1082 (5)	0.0419 (5)	0.7799 (7)	5.48 (21)
N(7 <i>B</i>)	0.8771 (4)	-0.0657 (3)	0.5730 (5)	5.14 (17)
C(8 <i>B</i>)	0.7975 (4)	-0.1872 (4)	0.5067 (6)	4.72 (18)
N(9 <i>B</i>)	0.8976 (3)	-0.2332 (3)	0.5562 (5)	4.76 (16)
C(10B)	0.8581 (5)	- 0-3549 (4)	0.5428 (6)	5.01 (19)
C(11 <i>B</i>)	0.8318 (5)	-0.3835 (4)	0.6971 (7)	5.20 (19)
C(12B)	0.6782 (5)	<i>−</i> 0·4352 (4)	0.6558 (7)	5-40 (20)
C(13B)	0.6276 (5)	-0.4240 (4)	0.4864 (7)	5.30 (20)
O(14B)	0.7386 (3)	-0.4130 (3)	0.4177 (4)	5.59 (16)

^{*} Lists of structure amplitudes, anisotropic thermal parameters, H-atom parameters and deviations of the atoms from leastsquares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52314 (26 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2 (cont.)

Table 3. Selected bond lengths (Å) and angles (°)

IA 1-316 (9) 1B 1-295 (10) II 1-329 (8)

	r	v	7	$B_{-}(\text{\AA}^2)$	
C(15 <i>B</i>)	0.5868 (4)	-0.3253(4)	0.4791 (7)	5.28 (19)	N(1) - C(2)
O(16B)	0.6919 (3)	-0.2208(2)	0.5780 (4)	4.80 (15)	C(2)—N(3)
O(17 <i>B</i>)	0.8734 (4)	- 0.4717 (4)	0.7241 (7)	7.94 (21)	N(3)-C(4)
C(18B)	0.7644 (6)	-0.5631 (4)	0.7348 (9)	6.85 (24)	C(4)—C(5)
O(19 <i>B</i>)	0.6474 (3)	-0.5498 (3)	0.6524 (6)	6.76 (18)	C(5)—C(6)
C(20B)	0.7688 (14)	-0.6700 (9)	0.6527 (23)	12.80 (59)	C(6) = N(1)
C(2IB)	0.9128 (13)	- 0.5529 (10)	0.9118(13)	5.57 (12)	N(7) = C(8)
O(23R)	0.9256 (4)	0.1294 (3)	0.5687 (6)	7.07 (12)	C(8) - N(9)
O(24B)	0.7060 (4)	-0.0197(4)	0.4104(5)	6.94 (19)	N(9)-C(4)
C(25B)	0.7508 (5)	0.0521 (4)	0.7179 (6)	5.07 (19)	N(9)-C(10
C(26B)	0.6155 (5)	-0.0016 (5)	0.6996 (8)	5.86 (22)	C(10)—C(1
C(27B)	0.5665 (6)	0.0203 (6)	0.8266 (9)	6.78 (25)	C(11)-C(1
C(28B)	0.6471 (6)	0.0934 (5)	0.9732 (8)	6.45 (23)	C(12) - C(1)
C(29B)	0.256 (7)	0.1262 (6)	0.9905 (9)	6.69 (24)	
C(30B)	0.5881 (11)	0.1263 (3)	0.9024 (8)	0.02 (22)	C(13) - C(1)
0(512)	0 5001 (11)	01100(11)	1110(11)) <u>52</u> (57)	C(15)-O(1
(II)					O(16)-C(8
N(1)	-0.1411 (5)	0.0509 (9)	1.1818 (5)	6.03 (21)	C(11)—O(1
C(2)	-0.2169 (5)	0.0138 (9)	1.0901 (5)	5-54 (22)	O(17)-C(1
N(3)	-0.2020 (3)	-0.0241 (8)	0.9695 (4)	5.00 (19)	C(18)-O(1
C(4)	-0.0948 (3)	-0.0170 (8)	0.9417 (4)	4.02 (19)	0(19)C(1
C(5)	-0.0058 (4)	0.0209 (8)	1.0279 (4)	4.15 (19)	$N(1) \rightarrow C(2)$
C(0) N(7)	-0.0305 (5)	0.0537(8)	1.1480 (5)	4.94 (21)	C(2) - N(3)
$\Gamma(R)$	0.0941(3) 0.0652(4)	-0.0028(8)	0.8253 (4)	3.83 (10)	N(3)-C(4)
N(9)	-0.0533(2)	- 0.0503 (7)	0.8251(3)	3.86 (18)	C(4)-C(5)-
C(10)	-0.1244 (4)	-0.0502 (9)	0.7100 (4)	4.16 (19)	C(5)C(6)-
C(11)	-0.1864 (4)	0.1247 (9)	0.6885 (5)	4.50 (20)	C(6)—N(1)
C(12)	-0·1148 (4)	0.2249 (9)	0.5979 (5)	4.35 (20)	C(5) - C(4)
C(13)	-0.0196 (4)	0.1029 (9)	0.5657 (5)	4.51 (20)	V(4) - N(9)
O(14) C(15)	-0.0552(2)	-0.0/07 (6)	0.6062(3)	4.70 (18)	C(8) - N(7)
0(15)	0.0913(4) 0.0795(2)	0.1481(9) 0.1624(0)	0.0334 (4)	4.36 (20)	C(8)-N(9)
O(17)	-0.2883(3)	0.0878(9)	0.6184(4)	6.56 (20)	N(9)C(10
C(18)	- 0.2983 (4)	0.2170 (12)	0.5220 (5)	5.82 (23)	C(10)C(1
O(19)	-0.1868 (2)	0.2529 (8)	0.4889 (3)	5-39 (18)	C(11)—C(1
C(20)	- 0.3566 (7)	0.1351 (18)	0.4048 (9)	8.58 (35)	C(12) - C(12)
C(21)	-0.3529 (7)	0.3808 (16)	0.5669 (9)	8.90 (35)	0(14) - 0(14)
C(22)	0.2004 (4)	-0.0025 (9)	1.0194 (5)	5.03 (20)	C(12) - C(1)
C(23)	0.2003(3) 0.3032(4)	- 0.0157 (9)	0.9436 (4)	4.69 (20)	C(13)-C(1
C(25)	0.3237(4)	0.0910 (9)	0.8407 (5)	4.99 (21)	C(15)-C(1
C(26)	0.4272 (5)	0.0785 (12)	0.7850 (6)	6.01 (23)	C(16)—C(8
C(27)	0.5071 (5)	-0.0419 (13)	0.8281 (7)	6.97 (27)	O(14)C(1
C(28)	0.4856 (5)	-0.1475 (13)	0.9270 (8)	6·94 (27)	((1)) = 0(1)
C(29)	0.2848 (4)	-0.1362 (10)	0.9882 (6)	5.89 (23)	
an					O(19)-C(1)
N(I)	0.0356 (2)	0.4072 (2)	0.4384 (5)	5.62 (22)	C(12)-C(1
C(2)	0.0978 (4)	0.5583(3)	0.4165(7)	5.73 (25)	
N(3)	0.2283 (3)	0.5692 (2)	0.3899 (5)	5.01 (22)	
C(4)	0.2932 (3)	0.5075 (2)	0.3881 (5)	3.60 (22)	
C(5)	0.2384 (3)	0.4385 (2)	0.4105 (5)	3.54 (22)	In al
C(6)	0.1061 (3)	0.4348 (2)	0.4368 (5)	4.37 (23)	111 41
N(7)	0.3389 (2)	0.38/9(1)	0.4000 (4)	$3 \cdot 7 (21)$	geomet
C(8) N(9)	0.4043 (3)	0.4248 (2)	0.3682(3) 0.3624(4)	3.65 (21)	dioxola
C(10)	0.5221(3)	0.5579 (2)	0.3523 (5)	3.75 (22)	other
C(11)	0.5349 (3)	0.6002 (2)	0.5069 (5)	3.25 (21)	other.
C(12)	0.6496 (3)	0.5644 (2)	0.5934 (5)	3.36 (21)	mum
C(13)	0.7017 (3)	0.5071 (2)	0-4794 (5)	3.92 (22)	0.135 (
O(14)	0.6452 (2)	0.5264 (1)	0.3260 (3)	4.23 (21)	nlana "
C(15)	0.6704 (3)	0.4296 (2)	0.5208 (7)	4.40 (22)	plane.
0(10)	0.5807 (2)	0.4102 (1)	0.2343 (3)	3·70 (20) 4·53 (20)	ter of
C(18)	0.6869 (4)	0.6884 (2)	0.5747 (5)	4.20 (20)	Ohachi
O(19)	0.7450 (2)	0.6209 (1)	0.6113 (4)	4.95 (21)	Ula Sill
C(20)	0.7833 (6)	0.7346 (3)	0-4840 (9)	6.58 (27)	wilson
C(21)	0.6361 (7)	0.7240 (3)	0.7224 (7)	6.34 (26)	The
C(22)	0.3230 (4)	0.3130 (2)	0.3993 (5)	4.27 (22)	dienlag
O(23)	0.2137 (3)	0.2879 (1)	0.4181 (4)	5.77 (21)	uispiau
C(24)	0.4491 (2)	0.2019 (3)	0.2110 (2)	5.14 (23)	0.459 A

Two independent molecules (IA and IB) are included in an asymmetric unit of (I). The *exo* and *endo* conformations for (IA) and (IB), respectively, are observed at the *p*-toluoyl group. The C(5)-N(7)-S(22)-C(25) torsion angles are 71.84 (IA) and -76.34° (IB).

	(-)	/- (/	(-)	
C(2)—N(3)	1.335 (7)	1.344 (6)	1.332 (8)	1.365 (6)
N(3)—C(4)	1.328 (7)	1.320 (7)	1.320 (6)	1.314 (5)
C(4)-C(5)	1.388 (8)	1.406 (8)	1.400 (7)	1.399 (6)
C(5)-C(6)	1.352 (6)	1.354 (6)	1.345 (8)	1.369 (5)
C(6) - N(1)	1.370 (8)	1.362 (9)	1.377 (9)	1.353 (6)
C(5) - N(7)	1.419 (6)	1.412 (7)	1.413 (7)	1.388 (5)
N(7) - C(8)	1.463 (6)	1.475 (6)	1.468 (6)	1.452 (5)
C(8) - N(9)	1.429 (8)	1.454 (8)	1.453 (6)	1.445 (5)
N(9) - C(4)	1.364 (5)	1.351 (5)	1.376 (6)	1.370 (4)
N(9) - C(10)	1.459 (7)	1.478 (7)	1.458 (6)	1.464 (5)
$C(10) \rightarrow C(11)$	1.518 (9)	1.517 (9)	1.532 (9)	1.520 (6)
$C(1) \rightarrow C(12)$	1.535 (7)	1.537 (7)	1.517 (8)	1.525 (5)
C(12) - C(12)	1.503 (1)	1.518 (0)	1.517 (8)	1.520 (5)
C(12) = C(13)	1.444 (9)	1.452 (8)	1.457 (8)	1.454 (5)
O(14) = O(14)	1.420 (6)	1.452 (6)	1.411 (6)	1 400 (5)
O(14) = O(16)	1.420 (6)	1.401 (0)	1.411 (0)	1.400 (3)
	1.510 (10)	1.512 (10)	1.514 (7)	1.301 (6)
	1.420 (0)	1.444 (5)	1.442 (6)	1.449 (5)
O(16) - C(8)	1.411 (8)	1.412 (7)	1.411 (/)	1.409 (5)
C(11) = O(17)	1.426 (8)	1.415 (9)	1-423 (7)	1.421 (5)
O(17) - C(18)	1.428 (7)	1.415 (8)	1.420 (10)	1.433 (5)
C(18) - O(19)	1.422 (9)	1.425 (9)	1.410 (7)	1.410 (5)
O(19) - C(12)	1.433 (7)	1.414 (7)	1·427 (6)	1.431 (5)
N(1) - C(2) - N(3)	128.4 (6)	129.3 (6)	129.6 (5)	128.6 (4)
C(2) - N(3) - C(4)	112.3 (5)	112.5 (5)	111.9 (4)	111.4 (3)
N(3)-C(4)-C(5)	124.5 (4)	123.6 (3)	124.9 (4)	125.5 (3)
C(4)—C(5)—C(6)	118-2 (5)	117.7 (5)	117.9 (5)	117-3 (3)
C(5)-C(6)-N(1)	119-5 (5)	119-4 (6)	119-5 (5)	118·9 (4)
C(6)—N(1)—C(2)	116.9 (4)	117.0 (4)	115.8 (5)	118-1 (3)
C(5)—C(4)—N(9)	109.8 (4)	110-1 (4)	109.6 (4)	108-2 (3)
C(4)—N(9)—C(8)	110·3 (4)	110.7 (4)	109.7 (3)	110.7 (3)
N(9)—C(8)—N(7)	103.3 (3)	101.2 (3)	102.2 (3)	101.9 (2)
C(8)—N(7)—C(5)	108.4 (4)	109.9 (4)	109-3 (3)	110.0 (3)
C(8)-N(9)-C(10)	121.9 (3)	120.7 (3)	121.9 (3)	121.1 (2)
N(9)C(10)C(11)	112.5 (4)	111-2 (4)	112.5 (4)	112.6 (3)
C(10) - C(11) - C(12)	104.6 (4)	104.0 (4)	104 5 (4)	104.5 (3)
C(11) - C(12) - C(13)	105-1 (5)	105.3 (5)	106.2 (5)	105.5 (3)
C(12) - C(13) - O(14)	105.0 (4)	104-4 (4)	105.0 (4)	104.5 (3)
C(13) - O(14) - C(10)	107.9 (4)	108.0 (4)	108 5 (4)	108-3 (3)
O(14) - C(10) - N(9)	108.1 (4)	108.6 (4)	108 6 (3)	108.1 (3)
C(12) - C(13) - C(15)	114.6 (5)	114.9 (5)	113-3 (5)	115.9 (3)
C(13) - C(15) - C(16)	112.2 (4)	111.9 (4)	111.6 (4)	112.8 (3)
C(15) - C(16) - C(8)	113.7 (4)	110.8 (4)	112.3 (3)	112.5 (3)
C(16)-C(8)-N(9)	112.8 (5)	112-3 (4)	110.8 (4)	111.6 (3)
O(14) - C(13) - C(15)	110.4 (5)	110.2 (5)	108.8 (4)	110.6 (3)
C(11)-O(17)-C(18)	108-6 (4)	109.7 (5)	106.5 (5)	108-3 (3)
O(17)-C(18)-O(19)	103.9 (5)	105.2 (5)	105 2 (4)	104.8 (3)
C(18) - O(19) - C(12)	108.3 (4)	109.4 (3)	107.8 (4)	109.3 (3)
O(19) - C(12) - C(11)	103.5 (4)	104.2 (5)	104.8 (4)	104.8 (3)
C(12) - C(11) - O(17)	105.0 (4)	105-1 (4)	104 7 (4)	104.5 (2)
,				

In all four molecules [(IA), (IB), (II) and (III)], the geometries of the purine and the fused furandioxolane group are almost consistent with each other. The purine rings are closely planar, with maximum displacement of 0.099 (IA), 0.109 (IB), 0.135 (II) and 0.096 (III) Å out of the least-squares plane. The rather large value is due to the sp^3 character of C(8) compared with nebularine (Takeda, Ohashi & Sasada, 1974) and cordycepin (Radwan & Wilson, 1980).

The furanose ring puckering is O(1')-exo, which is displaced by 0.452 (IA), 0.445 (IB), 0.433 (II) and 0.459 Å (III) from the least-squares plane through the remaining four atoms. The dioxolane ring is puckered C(6')-endo, with displacement of 0.449 (IA), 0.342 (IB), 0.447 (II) and 0.391 Å (III).

A closer examination seen in 2',3'-o-isopropylideneadenosine shows the C(3')-endo (molecule 1) and C(3')-exo,C(4')-endo twist (molecule 2) for the furanose ring and C(6')-endo,O(2')-exo (molecule 1)

111 1-304 (7) and C(3')-endo,O(3')-exo twist (molecule 2) for the dioxolane ring in the fused furan-dioxolane group (two molecules are included in an asymmetric unit) (Spring, Rohrer & Sundaralingam, 1978). The difference between cyclonebularines and this compound are attributed to the modification in which the furanose ring is cyclized at the C(1') and C(4') atoms in cyclonebularines in order to constrain the conformational flexibility of the fused furan-dioxolane group. The dihedral angles between furanose and dioxolane rings are 114.8 (IA), 115.0 (IB), 114.4 (II) and 114.3° (III).

In the seven-membered rings which link up with the purine and fused furan-dioxolane groups, the O(5')-endo conformation and C(8)-R configuration are observed in all three compounds. Intermolecular hydrogen bonds and unusual short non-bonding contacts are not observed in all three crystals.

Fig. 1. ORTEP drawings (Johnson, 1965) of the molecules (a) (IA), (b) (IB), (c) (II) and (d) (III). Thermal ellipsoids are drawn at the 50% probability level while isotropic hydrogen thermal parameters are represented by spheres of arbitrary size. Numbers given for the atoms (a) are independent of those in the text and conform to those in Tables 2 and 3.

References

(c) Fig. 2. Stereoviews of the crystal structures of (a) (I) shown approximately along the b axis, (b) (II) along the c axis, and (c)

(III) along the b axis.

- HAYAKAWA, H., ASHIZAWA, H., TANAKA, H., MIYASAKA, T. & YAMAGUCHI, K. (1989). Nucleosides Nucleotides, 8, 1287–1296.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- RADWAN, M. M. & WILSON, H. R. (1980). Acta Cryst. B36, 2185-2187.
- SPRING, S., ROHRER, D. C. & SUNDARALINGAM, M. (1978). Acta Cryst. B34, 2803–2810.
- TAKEDA, T., OHASHI, Y. & SASADA, Y. (1974). Acta Cryst. B30, 825-827.
- YAO, J.-X., ZHENG, C.-D., QIAN, J.-Z., HAN, F.-S., GU, Y.-X. & FAN, H.-F. (1985). SAPI85. A Computer Program for Automatic Solution of Crystal Structure from X-ray Diffraction Data. Institute of Physics, Academia Sinica, Beijing, China.